517 research outputs found

    Assessment of stable coronary artery disease by cardiovascular magnetic resonance imaging: Current and emerging techniques

    Get PDF
    Coronary artery disease (CAD) is a leading cause of death and disability worldwide. Cardiovascular magnetic resonance (CMR) is established in clinical practice guidelines with a growing evidence base supporting its use to aid the diagnosis and management of patients with suspected or established CAD. CMR is a multi-parametric imaging modality that yields high spatial resolution images that can be acquired in any plane for the assessment of global and regional cardiac function, myocardial perfusion and viability, tissue characterisation and coronary artery anatomy, all within a single study protocol and without exposure to ionising radiation. Advances in technology and acquisition techniques continue to progress the utility of CMR across a wide spectrum of cardiovascular disease, and the publication of large scale clinical trials continues to strengthen the role of CMR in daily cardiology practice. This article aims to review current practice and explore the future directions of multi-parametric CMR imaging in the investigation of stable CAD

    Role of cardiovascular magnetic resonance imaging in cardio-oncology

    Get PDF
    Advances in cancer therapy have led to significantly longer cancer-free survival times over the last 40 years. Improved survivorship coupled with increasing recognition of an expanding range of adverse cardiovascular effects of many established and novel cancer therapies has highlighted the impact of cardiovascular disease in this population. This has led to the emergence of dedicated cardio-oncology services that can provide pre-treatment risk stratification, surveillance, diagnosis, and monitoring of cardiotoxicity during cancer therapies, and late effects screening following completion of treatment. Cardiovascular imaging and the development of imaging biomarkers that can accurately and reliably detect pre-clinical disease and enhance our understanding of the underlying pathophysiology of cancer treatment-related cardiotoxicity are becoming increasingly important. Multi-parametric cardiovascular magnetic resonance (CMR) is able to assess cardiac structure, function, and provide myocardial tissue characterization, and hence can be used to address a variety of important clinical questions in the emerging field of cardio-oncology. In this review, we discuss the current and potential future applications of CMR in the investigation and management of cancer patients

    Taxonomy of segmental myocardial systolic dysfunction.

    Get PDF
    The terms used to describe different states of myocardial health and disease are poorly defined. Imprecision and inconsistency in nomenclature can lead to difficulty in interpreting and applying trial outcomes to clinical practice. In particular, the terms 'viable' and 'hibernating' are commonly applied interchangeably and incorrectly to myocardium that exhibits chronic contractile dysfunction in patients with ischaemic heart disease. The range of inherent differences amongst imaging modalities used to define myocardial health and disease add further challenges to consistent definitions. The results of several large trials have led to renewed discussion about the classification of dysfunctional myocardial segments. This article aims to describe the diverse myocardial pathologies that may affect the myocardium in ischaemic heart disease and cardiomyopathy, and how they may be assessed with non-invasive imaging techniques in order to provide a taxonomy of myocardial dysfunction

    High spatial resolution myocardial perfusion cardiac magnetic resonance for the detection of coronary artery disease

    Get PDF
    To evaluate the feasibility and diagnostic performance of high spatial resolution myocardial perfusion cardiac magnetic resonance (perfusion-CMR). Methods and results Fifty-four patients underwent adenosine stress perfusion-CMR. An in-plane spatial resolution of 1.4 x 1.4 mm(2) was achieved by using 5x k-space and time sensitivity encoding (k-t SENSE). Perfusion was visually graded for 16 left ventricular and two right ventricular (RV) segments on a scale from 0 = normal to 3 = abnormal, yielding a perfusion score of 0-54. Diagnostic accuracy of the perfusion score to detect coronary artery stenosis of >50% on quantitative coronary angiography was determined. Sources and extent of image artefacts were documented. Two studies (4%) were non-diagnostic because of k-t SENSE-related and breathing artefacts. Endocardial dark rim artefacts if present were small (average width 1.6 mm). Analysis by receiver-operating characteristics yielded an area under the curve for detection of coronary stenosis of 0.85 [95% confidence interval (CI) 0.75-0.95] for all patients and 0.82 (95% CI 0.65-0.94) and 0.87 (95% CI 0.75-0.99) for patients with single and multi-vessel disease, respectively. Seventy-four of 102 (72%) RV segments could be analysed. Conclusion High spatial resolution perfusion-CMR is feasible in a clinical population, yields high accuracy to detect single and multi-vessel coronary artery disease, minimizes artefacts and may permit the assessment of RV perfusion

    Quantification of myocardial blood flow with cardiovascular magnetic resonance throughout the cardiac cycle

    Get PDF
    BACKGROUND: Myocardial blood flow (MBF) varies throughout the cardiac cycle in response to phasic changes in myocardial tension. The aim of this study was to determine if quantitative myocardial perfusion imaging with cardiovascular magnetic resonance (CMR) can accurately track physiological variations in MBF throughout the cardiac cycle. METHODS: 30 healthy volunteers underwent a single stress/rest perfusion CMR study with data acquisition at 5 different time points in the cardiac cycle (early-systole, mid-systole, end-systole, early-diastole and end-diastole). MBF was estimated on a per-subject basis by Fermi-constrained deconvolution. Interval variations in MBF between successive time points were expressed as percentage change. Maximal cyclic variation (MCV) was calculated as the percentage difference between maximum and minimum MBF values in a cardiac cycle. RESULTS: At stress, there was significant variation in MBF across the cardiac cycle with successive reductions in MBF from end-diastole to early-, mid- and end-systole, and an increase from early- to end-diastole (end-diastole: 4.50 ± 0.91 vs. early-systole: 4.03 ± 0.76 vs. mid-systole: 3.68 ± 0.67 vs. end-systole 3.31 ± 0.70 vs. early-diastole: 4.11 ± 0.83 ml/g/min; all p values <0.0001). In all cases, the maximum and minimum stress MBF values occurred at end-diastole and end-systole respectively (mean MCV = 26 ± 5%). There was a strong negative correlation between MCV and peak heart rate at stress (r = -0.88, p < 0.001). The largest interval variation in stress MBF occurred between end-systole and early-diastole (24 ± 9% increase). At rest, there was no significant cyclic variation in MBF (end-diastole: 1.24 ± 0.19 vs. early-systole: 1.28 ± 0.17 vs.mid-systole: 1.28 ± 0.17 vs. end-systole: 1.27 ± 0.19 vs. early-diastole: 1.29 ± 0.19 ml/g/min; p = 0.71). CONCLUSION: Quantitative perfusion CMR can be used to non-invasively assess cyclic variations in MBF throughout the cardiac cycle. In this study, estimates of stress MBF followed the expected physiological trend, peaking at end-diastole and falling steadily through to end-systole. This technique may be useful in future pathophysiological studies of coronary blood flow and microvascular function

    Quantitative three-dimensional cardiovascular magnetic resonance myocardial perfusion imaging in systole and diastole

    Get PDF
    BACKGROUND: Two-dimensional (2D) perfusion cardiovascular magnetic resonance (CMR) remains limited by a lack of complete myocardial coverage. Three-dimensional (3D) perfusion CMR addresses this limitation and has recently been shown to be clinically feasible. However, the feasibility and potential clinical utility of quantitative 3D perfusion measurements, as already shown with 2D-perfusion CMR and positron emission tomography, has yet to be evaluated. The influence of systolic or diastolic acquisition on myocardial blood flow (MBF) estimates, diagnostic accuracy and image quality is also unknown for 3D-perfusion CMR. The purpose of this study was to establish the feasibility of quantitative 3D-perfusion CMR for the detection of coronary artery disease (CAD) and to compare systolic and diastolic estimates of MBF. METHODS: Thirty-five patients underwent 3D-perfusion CMR with data acquired at both end-systole and mid-diastole. MBF and myocardial perfusion reserve (MPR) were estimated on a per patient and per territory basis by Fermi-constrained deconvolution. Significant CAD was defined as stenosis ≥70% on quantitative coronary angiography. RESULTS: Twenty patients had significant CAD (involving 38 out of 105 territories). Stress MBF and MPR had a high diagnostic accuracy for the detection of CAD in both systole (area under curve [AUC]: 0.95 and 0.92, respectively) and diastole (AUC: 0.95 and 0.94). There were no significant differences in the AUCs between systole and diastole (p values >0.05). At stress, diastolic MBF estimates were significantly greater than systolic estimates (no CAD: 3.21 ± 0.50 vs. 2.75 ± 0.42 ml/g/min, p 0.05). Image quality was higher in systole than diastole (median score 3 vs. 2, p = 0.002). CONCLUSIONS: Quantitative 3D-perfusion CMR is feasible. Estimates of MBF are significantly different for systole and diastole at stress but diagnostic accuracy to detect CAD is high for both cardiac phases. Better image quality suggests that systolic data acquisition may be preferable

    A comparison of cardiovascular magnetic resonance and single photon emission computed tomography (SPECT) perfusion imaging in left main stem or equivalent coronary artery disease: a CE-MARC substudy

    Get PDF
    Background: Assessment of left main stem (LMS) stenosis has prognostic and therapeutic implications. Data on assessment of LMS disease by cardiovascular magnetic resonance (CMR) and single photon emission computed tomography (SPECT) are limited. CE-MARC is the largest prospective comparison of CMR and SPECT against quantitative invasive coronary angiography (QCA) for detection of coronary artery disease (CAD), and provided the framework for this evaluation. The aims of this study were to compare diagnostic accuracy of visual and quantitative perfusion CMR to SPECT in patients with LMS stable CAD. Methods: Fifty-four patients from the CE-MARC study were included: 27 (4%) with significant LMS or LMS-equivalent disease on QCA, and 27 age/sex-matched patients with no flow-limiting CAD. All patients underwent multi-parametric CMR, SPECT and QCA. Performance of visual and quantitative perfusion CMR by Fermi-constrained deconvolution to detect LMS disease was compared with SPECT. Results: Of 27 patients in the LMS group, 22 (81%) had abnormal CMR and 16 (59%) had abnormal SPECT. All patients with abnormal CMR had abnormal perfusion by visual analysis. CMR demonstrated significantly higher area under the curve (AUC) for detection of disease (0.95; 0.85–0.99) over SPECT (0.63; 0.49–0.76) (p = 0.0001). Global mean stress myocardial blood flow (MBF) by CMR in LMS patients was significantly lower than controls (1.77 ± 0.72 ml/g/min vs. 3.28 ± 1.20 ml/g/min, p < 0.001). MBF of <2.08 ml/g/min had sensitivity of 78% and specificity of 85% for diagnosis of LMS disease, with an AUC (0.87; 0.75–0.94) not significantly different to visual CMR analysis (p = 0.18), and more accurate than SPECT (p = 0.003). Conclusion: Visual stress perfusion CMR had higher diagnostic accuracy than SPECT to detect LMS disease. Quantitative perfusion CMR had similar performance to visual CMR perfusion analysis

    Cardiac magnetic resonance imaging for the detection of myocardial involvement in granulomatosis with polyangiitis

    Get PDF
    The prevalence of undiagnosed cardiac involvement in granulomatosis with polyangiitis (GPA) is unknown. In this prospective study we investigated the utility of cardiovascular magnetic resonance (CMR) to identify myocardial abnormalities in GPA and their correlation with disease phenotype. Twenty-six patients with GPA and no cardiovascular disease or diabetes mellitus underwent contrast-enhanced CMR, including late gadolinium-enhancement (LGE), T1-mapping for native T1 and extra-cellular volume (ECV) quantification for assessment of myocardial fibrosis, cine imaging and tissue tagging for assessment of left ventricular (LV) function. Twenty-five healthy volunteers (HV) with comparable age, sex, BMI and arterial blood pressure served as controls. Patients with GPA had similar cardiovascular risk profile to HV. A focal, non-ischaemic LGE pattern of fibrosis was detected in 24% of patients and no controls (p = 0.010). Patients with myocardial LGE were less frequently PR3 ANCA (7% vs 93%, p = 0.007), and had involvement of the lower respiratory tract and skin. LGE scar mass was higher in patients presenting with renal involvement. Native T1 and ECV were higher in patients with GPA than HV; ECV was higher in those with relapsing disease, and native T1 was inversely associated with PR3 ANCA (β = − 0.664, p = 0.001). Peak systolic strain was slightly reduced in GPA compared to controls; LV ejection function was inversely correlated with disease duration (β = − 0.454, p = 0.026). Patients with GPA have significant myocardial abnormalities on CMR. ANCA, systemic involvement and disease severity were associated with myocardial fibrosis. CMR could be a useful tool for risk stratification of myocardial involvement in GPA
    corecore